ENTOMOLOGÍA Y BIODIVERSIDAD EN ARAGÓN

El organismo modélico

Si un hipotético extraterrestre se viera en la necesidad de designar a una especie como modelo o representación de la vida orgánica sobre nuestro planeta, es muy probable que eligiera a un artrópodo basándose en la combinación de tres argumentos:

1) Son uno de los grupos biológicos geológicamente más antiguos que se conocen.

2) Han mantenido una presencia altamente significativa, cuando no francamente dominante en términos de biomasa total, en la mayoría de los ecosistemas mundiales, probablemente a lo largo de los últimos 600 millones de años y sin lugar a dudas en la actualidad.

3) El grado de diversificación morfológica y ecológica alcanzado por los artrópodos, y especialmente por los insectos, no tiene parangón con el de ningún otro grupo taxonómico actual o extinguido.

Frente a estos éxitos bien contrastados, la elección de la especie humana como organismo modélico, carecería de fundamentos biológicos, aunque desde el punto de vista de la singularidad ecológica, podría resultar razonable. Tan sólo la batería de envenenar, competir digne-mente con los artrópodos, pues ostentan una antigüedad inmatible: las primeras especies conocidas se remontan a 3,800 millones de años atrás en el calendario geológico y, en cierto sentido, puede decirse que inventaron la vida, pues son los primeros organismos de los que tenemos constancia; al mismo tiempo presentan una enorme diversidad en gran parte todavía sin describir científicamente y su número es apabullante (por ejemplo, la comunidad de individuos presente en el intestino de cualquier persona es superior a la población humana mundial). Su capacidad de adaptación a todo tipo de hábitats resulta también extraordinaria (además del intestino de los mamíferos, habitan profundidades de varios kilómetros bajo la superficie terrestre o bajo los hielos antárticos en formaciones de varios millones de individuos por grano de arena). Sin embargo, las bacterias son organismos sencillos, unicelulares, que apenas han alcanzado un mínimo grado de complejidad estructural ampliamente superado por los Metazoos (organismos pluricelulares) entre cuyos componentes ocupan un lugar destacado los artrópodos, el mayor y más va-
riado conjunto animal que haya existido sobre nuestro planeta. Con excepción de las regiones polares, los artrópodos han colonizado todos los biotopos conocidos: desertos, bosques, playas, aguas dulces y profundidades marinas, cavernas, campos de cultivo y las más inhóspitas de nuestras ciudades, soportando y prosperando en temperaturas de 40° C bajo cero a 50° sobre cero en algunos desertos o entre coladas de lava reciente (tenemos el ejemplo en la isla de Lanzarote de un escarabajo que recibe el apropiado nombre de *Stereo- caelobolus volcanis*), adoptando todo tipo de estrategias ecológicas y aprovechando prácticamente cualquier sustancia como alimento: de las plantas y animales vivos a sus restos en descomposición, de la cera o el azogue de los espejos a microorganismos en pozos de petróleo... Su número en efectivos resulta igualmente sorprendente incluso cuando no forman plagas o colonias: se calcula que una sola hectárea de bosque europeo (y, en consecuencia, relativamente poco poblado) alberga unos cien kilos de artrópodos en su superficie (sin contar los de hábitos subterráneos).

Básicamente, nuestro Planeta es, y ha sido siempre, artrópodo.

¿Qué es un artrópodo?

Es difícil definir a los artrópodos sin utilizar palabras excesivamente técnicas relacionadas con su anatomía y fisiología. No obstante, podemos resumir diciendo que se trata de animales pluricelulares, con el cuerpo dividido en segmentos articulados (que con frecuencia resultan difíciles de apreciar), dotados de apéndices también articulados y provistos de una cutícula rígida, quitinosa, segregada por la epidermis, que a menudo también, sufre un proceso de esclerotización. En definitiva, se trata de insectos dotados de un esqueleto externo articulado. Salvando las distancias, podríamos pensar en una lombriz con patas embutidas en una armadura medieval a medida.

Esta característica tan poco prometedora esconde, en esencia, las razones del éxito ecológico de los artrópodos. Su peculiar esqueleto externo reúne dos rasgos difíciles de compatibilizar: resistencia y flexibilidad, lo que en conjunto proporciona gran adaptabilidad y, con ella, una elevada capacidad de dispersión puesta de manifiesto en momentos tan tempranos como el Cámbrico, en el que los artrópodos se expandieron por todos los mares, o el Silúrico y Devónico, en el que colonizaron la tierra firme.

El modelo corporal o morfológico artrópodo presenta importantes ventajas y un enorme potencial, pero también numerosos problemas. Por ejemplo, la presión de estructuras rígidas constituye un buen mecanismo de defensa frente a depredadores y proporciona protección y consistencia frente al medio ambiente, a la par que una mayor independencia de éste. Pero, junto a estas ganancias hay que considerar algunos inconvenientes que debieron superar los antepasados del grupo, como son la necesidad de disponer de una musculatura adecuada que permita el desplazamiento de un cuerpo relativamente pesado, un mecanismo circulatorio apropiado a aquél, un sistema respiratorio que, a pesar de la cutícula, permita el intercambio de gases con el exterior en condiciones aceptables (es decir, obtener oxígeno sin perder humedad, al menos en las especies terrestres) o un conjunto de órganos y apéndices especializados que permitan la interacción con el medio en cuestiones tan importantes como la búsqueda y acceso al alimento. Pero todos estos problemas son pequeños en comparación con el crecimiento. Cuando se vive en el interior de un esqueleto rígido no puede aumentarse el tamaño corporal. Los artrópodos han solucionado este problema mediante mudas sucesivas (los trilobites ya la utilizaban) y han mejorado el sistema inventando la metamorfosis, lo que permite a una misma especie desarrollarse a través de fases sucesivas (larvaria, pupal y adulta) en cada una de las cuales presenta diferente morfología (oruga y mariposa, por ejemplo), combinada habitualmente con la explotación de diferentes recursos alimentarios y hábitats. La versatilidad ecológica derivada de este tipo de desarrollo (magníficamente gestionada por un elevado número de insectos), el modelo de morfología artrópoda y la eficacia reproductiva de que hacen gala proporcionan las razones de su éxito.

Entre sus miembros existe, no obstante, un elevado grado de variabilidad morfológica. Ello es debido a que los problemas del modelo básico artrópodo han sido solucionados de diferente modo por cada una de las grandes categorías incluidas en *Arthropoda* (denominadas clases zoológicas): arácnidos o quelicerados (escorpiones, arañas y ácaros principalmente), crustáceos (cangrejos, percebes o cochinillas de la humedad), miriápodos (ciempiés y milpiés) e insectos (escarabajos, moscas, avispas, mariposas y decenas de otros subgrupos).

El origen de los artrópodos

El modelo artrópodo aparece ya perfectamente definido en los mares cámbricos de hace 550 millones de años presentando una gran diversidad de adaptaciones y desarrollos secundarios. Los yacimientos del período geológico muestran numerosos ejemplos de crustáceos primitivos y arácnidos hoy extinguidos o cuya presencia es apenas testimonial, como los *Eurypterus*, escorpiones marinos que alcanzaron los dos metros de longitud o los Xiphosurus, emparentados con las actuales cacerolas.
de las Molucas. Junto a éstos prosperó, al menos temporalmente, una pléyade de organismos de características netamente distintas a las anteriores, que han llegado hasta nuestros días. Entre los primeros se cuentan los trilobites, grupo ampliamente diversificado durante los 300 millones de años que duró el Paleozoico, e incluso dominante en los ecosistemas marinos cambrianos. Entre los organismos de menor aparición antropóidea deberíamos señalar diversas especies de características únicas descubiertas en los escasos yacimientos fosilíferos que han sido capaces de conservar fauna de cuerpo completo. Es el caso de Burgess Shale en Canadá, Chengjiang en China y, todo parece indicar que Murro, en Zag Too, quizás el animal más destacado de Burgess Shale sea Marrella splendid, un artrópodo único por su peculiar morfología. Otros ejemplos son Opabinia regalis o Hallucigenia sparsa, igualmente extraños a la tipología de los modernos artrópodos por ello considerados en conjunto una suerte de experimentos evolutivos fósiles, especies que no llegaron a ninguna parte. A pesar de todo, la riqueza biológica de tipos y formas artrópodos de los que tenemos noticias, explotada en sus intensidades y rapidez, induce a sospechar que el origen de los artrópodos se remonta a períodos geológicos anteriores. Sin solución de continuidad y de un universo biológico prácticamente unicelular se produjo la aparición masiva de nuevos organismos pluricelulares (metazoarios) entre los que se cuenta una vasta colección de formas artrópodos. Por desgracia, el registro fósil del Precámbrico es escaso e imperfecto y apenas pueden arrojar luz sobre el origen de la fauna emergente. Las causas de esta ausencia pueden resumirse en el carácter metamórfico de las rocas precámbricas (pues este proceso tiende a hacer desaparecer cualquier resto fósil) y la ausencia de capas rizadas o esqueletales calcificados en organismos anteriores del Cámbrico. De hecho, la única excepción conocida a este caso, cultivada como Paramecium mincllum y localizada en Edisarca (Australia), ha sido asignada tentativamente a una forma larvaria de trilobite o crustáceo, por lo que, de ser correcta la hipótesis, constituiría el artrópodo fósil más antiguo conocido hasta la fecha.

Otro grupo muy cercano a los artrópodos, con apenas un centenar de especies vivientes, y sobre cuya posición en el Reino Animal y relaciones con otros grupos no termina de alcanzarse un acuerdo entre los sistemáticos, de los onícorforos. Se trata de un pequeño conjunto de animales con el cuerpo de una gusano segmentado y apicalmente marchador (es decir, con patas que reciben el nombre de oncópodos). A esta combinación de caracteres se une la presencia de una cutícula quitinosa (casi compartida con los artrópodos) que no cumple la función de esqueleto externo por ser extraordinariamente delgada y flexible. Una de las hipótesis que se manejan es la posibilidad de que los antecesores de estos animales fueran el clado que unía a dos grandes grupos animales: el de los artrópodos y el de los anélidos (que incluye lombríces y sanguíferos, entre otros), lo que haría a Onychophora como el antecesor de Artropoda. La cuestión, de momento, está lejos de resolverse, pero en los últimos años ha cobrado una especial importancia. Hasta hace dos décadas apenas eran conocidos restos fósiles de onícorforos, pero que en general eran considerados, junto a los escasos representantes vivientes, un grupo zoológico prácticamente insignificante. Sin embargo, la recientemente interpretación de materiales fósiles que han sido considerados inclasificables ha permitido asignar a Orychophora un elevado número de nuevas especies, entre las que se cuentan miembros destacados de Burgess Shale como Aysbeata o Hallucigenia, o de los yacimientos de China, Groenlandia y un ejemplar de Murro en estudio. El registro fósil recoge incluso un oncóforo del Precámbrico Xenosis aurisvaldii y muestra, en el Cámbrico, una gran diversidad de formas y la presencia de estructuras rígidas (espina, coraza) que han desaparecido en las especies modernas, pero que aparentemente relacionan a sus antecesores con los primitivos artrópodos. Algunos autores consideran que los onícorforos son simplemente una clase más de Artrópoda, como los aracnídos o los insectos. Sea cual sea la hipótesis correcta, los artrópodos y grupos estrechamente emparentados con ellos, como los onícorforos, pueden remontarse en su linaje hasta los albores de la vida pluricelular en nuestro planeta.

La historia geológica de los artrópodos

Todo parece indicar que trilobites, carniceros y crustáceos dominaron, en número y variedad, los mares cambrianos. Durante los 100 millones de años siguientes (Ordovícico y Silúrico) continuó el proceso de diversificación artrópoda aunque sujeto a algunas duras experiencias de extinción en masa (que, por ejemplo, redujeron temporalmente la diversidad de trilobites). En el Silúrico aparecieron los primeros escorpiones verdaderos que todavía son marinos y guardaban una similitud sorprendente con los actuales terrestres.

Hace unos 400 millones de años, se produjo uno de los grandes hitos de la Historia Natural: la conquista del medio terrestre por animales y plantas. El salto del agua a la tierra tuvo que ser necesariamente un proceso lento y progresivo que requirió la 'inventación' de un considerable número de adaptaciones espe-
cificas al nuevo medio. Entre los animales, la fundamental fue el cambio de estructura en los órganos respiratorios, pero también otras asociadas a los problemas de pérdida de humedad (problema inexistente bajo el agua), el aumento del peso relativo del cuerpo en tierra firme y, consecuentemente, el problema del movimiento, así como la modificación de estructuras sensoriales de visión, captación de movimiento, etc...

Los artrópodos fueron uno de los primeros grupos animales en conquistar la tierra firme.

La razón de ese éxito radica en que el modelo artrópodo parece especialmente diseñado para participar en la colonización terrestre gracias a su cutícula protectora que impide la desecación al tiempo que soporta el cuerpo y permite el movimiento por efecto de los apéndices marchadores articulados.

Del Silúrico son conocidos algunos restos de miriápodos, junto a escorpiones y euréptidos que parecieron ser capaces de mantener un tipo de vida anfibia que les permitía salir del agua temporalmente. En el Devónico se completa el actual panorama de clases artrópodos con la aparición del primer fósil de un insecto: *Rhyniella precursus*. Se trata de un coleóptero de apenas un par de milímetros de mediados del periodo. Existen otros restos anteriores que resultan de difícil interpretación. Aparecen también en ese momento los primeros ácaros.

Si el Cámbrico es famoso por la explosión de vida que pobló sus mares, durante el Carbonífero (340-260 m.a.) se produce una situación similar en tierra firme. Aunque el registro fósil es poco propenso a preservar estructuras tan delicadas como las de los artrópodos, tenemos noticias de la aparición de al menos 100 nuevas familias de insectos y muchos arácnidos terrestres. Sin lugar a dudas diferentes factores ayudaron a esta enorme expansión: el clima cálido y lluvioso unido a la expansión de algunos grupos de plantas dio lugar a enormes bosques tropicales. Al tiempo, y posiblemente a consecuencia del alto nivel de oxígeno en el aire, muchas de las especies alcanzaron tamaños enormes. *Megalura* era una libelula de 70 cm de envergadura alas, *Arthropleura* fue un millímetro vegetal que pesó casi sus dos metros de largo y 45 cm de ancho entre los licópodos de la época. Cucarachas de 30 cm o arañas de 50 cm y escorpiones de un metro formaban parte de la fauna aracnofauna de mayor tamaño que haya existido sobre nuestro planeta.

planta angiospermas lo que dará lugar a un rápido incremento de numerosos grupos de insectos florícolas (coleópteros, lepidópteros, himenópteros y dipteros especialmente). Insectos y plantas con flores iniciaron en ese momento un convenio de ayuda mutua vigente plenamente en la actualidad por el que los primeros colaboran en la polinización de los segundos a cambio de alimento. Se ha por este motivo o sea por el conocimiento de otros grupos, lo cierto es que cuando los dinosaurios se extinguieron hace 65 m.a. permitiendo la expansión de un reducido grupo de pequeños animales (los mamíferos), los artrópodos desplegaron todo un arsenal de formas y adaptaciones tanto en los mares como en tierra firme, donde arácnidos (ya casi en su totalidad terrestres) miriápodos y, sobre todo, insectos superaron, en conjunto, las 880 familias.

Los paleontólogos manejan estimaciones de la diversidad de especies que han existido sobre nuestro Planeta que oscilan entre los 30 millones de organismos y varios miles de millones. Cualquiera que sea la cifra correcta, hay un hecho que puede considerarse razonablemente constatado: la mayor parte de ese enorme ejército de seres vivientes han sido artrópodos.

Entomología y Biodiversidad

La Entomología es la parte de la Biología que se ocupa de los artrópodos. Como disciplina tiene ante sí una enorme extensión de territorio científico por desarrollar que incluye el descubrimiento, descripción y clasificación de las especies, así como la obtención y organización de la información relativa a su distribución espacial, biología y ecología, entre otros aspectos.

La tarea de los entomólogos es apasionante, pero de proporciones inhumanas. La biodiversidad, entendida como el conjunto de organismos vivientes, es en esencia artrópoda y, por tanto, el problema de acceder con una cierta eficacia al inventario de esa riqueza biológica es labor fundamentalmente de los entomólogos.

En la actualidad se conocen alrededor de 1,750,000 organismos (CUADRO N° 1), en su mayoría animales pluricelulares, de los que 1,085,000 son especies artrópodos. De virus a sequía, de liebres a ballena, tres de cada cinco organismos identificados hasta la fecha son una araña, un cangrejo o un insecto. En con-
<table>
<thead>
<tr>
<th>Reino</th>
<th>Grupo</th>
<th>Subtotales</th>
<th>Totales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterias</td>
<td></td>
<td>8.000</td>
<td></td>
</tr>
<tr>
<td>Protozoos</td>
<td></td>
<td>80.000</td>
<td></td>
</tr>
<tr>
<td>Plantas superiores</td>
<td></td>
<td>270.000</td>
<td></td>
</tr>
<tr>
<td>Fungi (Hongos)</td>
<td></td>
<td>72.000</td>
<td></td>
</tr>
<tr>
<td>Animales</td>
<td></td>
<td>1.320.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porífera, cnidaria</td>
<td>63.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y grupos menores</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anéldidos y otros</td>
<td>57.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moluscos</td>
<td>70.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Artrópodos</td>
<td>1.085.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Arácnidos</td>
<td>65.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Crustáceos</td>
<td>35.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Miriápodos</td>
<td>10.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Insectos</td>
<td>975.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vertebrados</td>
<td>45.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTALES</td>
<td>1.750.000</td>
<td></td>
</tr>
</tbody>
</table>

CUADRO I.-Distribución de la biodiversidad conocida por grupos taxonómicos.

creo, sólo los insectos, representan más de la mitad de todas las formas vivientes conocidas. Las cifras hablan por sí solas: se conocen 150.000 especies de abejas, avispas y hormigas (Hymenoptera), y otras tantas de moscas y mosquitos (Diptera), 150.000 mariposas (Lepidoptera), 32.000 chinches (Hemiptera) o más de 5.000 cucarachas (Dictyoptera), 20.000 saltamontes (Orthoptera) o, batiendo todos los récords, más de 320.000 escarabajos (Coleoptera).

Estas magnitudes, por impresionantes que puedan parecer, no deben esconder tres graves problemas que afectan directamente a la labor de la Entomología:

1) En muchos de los casos, lo único conocido de las especies es una breve descripción morfológica, un nombre científico y una localidad de origen. Apenas existen tiempo y recursos para profundizar ligeramente en la biología o ecología de los organismos.

2) El interés social que despertan los artrópodos es muy bajo, lo que afecta a las posibilidades del trabajo entomológico (asignación de recursos para investigación, valoración profesional, etc.). La medida de este interés es difícil de precisar, pero es suficiente con comparar aspectos como la atención recibida en medios de comunicación, normas de protección, etc., con respecto a la recibida por otros grupos proporcionalmente pobres en efectivos (sólo a título de ejemplo: existen más especies de cucarachas que de mamíferos o anfibios, o más pulgones que vertebrados).

3) Pero existe un tercer problema objetivo mucho más complicado de resolver: el del tamaño real de la biodiversidad. La cifra de organismos descritos hasta la fecha constituye exclusivamente el mínimo número de los vivientes. Las revistas científicas publican continuamente artículos en los que son descritos nuevos organismos. Durante la década de los ochenta se describieron 12.000 nuevos animales por año (a los que deben añadirse plantas, hongos, bacterias y virus, entre otros). Una 9.000 especies anuales resultaron ser artrópodos. Numerosos científicos han realizado estimaciones sobre la biodiversidad planetaria a partir de extrapolaciones de datos obtenidos en muestras de fondos marinos o selvas tropicales. Las más optimistas manejan cifras que rondan los 100 millones de especies, de las que 97 serían artrópodos, mientras que los más pesimistas súan el listón en unos 4 millones de organismos, por lo que puede decirse que existe un cierto consenso entre los especialistas alrededor de los 15 millones. Si esta cifra, razonablemente prudente, es correcta, apenas conocemos algo más del 10 por ciento de la riqueza biológica planetaria y, por tanto, las magnitudes que hemos asignado a colópteros o a dípteros deben ser multiplicadas por 10. En resumen: quedan por descubrir unos 8 millones de insectos y un millón de otros artrópodos. El CUADRO nº 2 recoge el estado de nuestros conocimientos y el trabajo por realizar en los principales grupos biológicos.

Una cuestión inmediata que surge a la vista de estos datos es la de si disponemos de tiempo suficiente para realizar el trabajo de identificación de la biodiversidad. La respuesta parece ser negativa. Al ritmo actual de catalogación (9.000 especies/año) es necesario todo un milenio para describir 9 millones de artrópodos. Aunque largo, el plazo tiene marcado un final. Sin embargo existe un problema de otro tipo: la biodiversidad planetaria difícilmente puede mantener su tamaño actual durante ese período de tiempo. Se calcula que anualmente desaparecen unos 17.000 organismos y que esta cifra tiende a incrementarse. Nuestro planeta no parece 'pensado' para soportar una población del tamaño y hábitos de la humana, imponiendo un precio (o malta) en forma de tasa creciente de extinción de especies, es decir, de reducción progresiva de la diversidad biológica. Los esfuerzos conservacionistas, aunque elogiados, no dejan de ser simples posicionamiento ideológico poco eficaces a la larga. Para ello es suficiente considerar dos paradojas que plantea el problema de la preservación de la biodiversidad a cualquier nivel geográfico:

1) Conservar la diversidad implica básicamente conservar a los artrópodos, pues éstos son el elemento cuantitativo y cualitativo más significativo de la magnitud. Sin embargo, ninguno de los programas, ni las disposiciones de carácter proteccionista toman en consideración el papel fundamental de los artrópodos en el funcionamiento de los ecosistemas naturales o el estatus de especies concretas de vertebrados fuera de algunos tópicos.
2) La segunda paradoja tiene un cálido teórico mucho más profundo que puede formularse del siguiente modo: ¿cómo conservar lo desconocido? ¿cómo conocer, al mismo tiempo, aquello que no puede conservarse el tiempo suficiente para ser conocido? La única respuesta coherente a estas preguntas es que sin dejar de mantener una política conservacionista (que preste mayor atención a otros grupos zoológicos diferentes de los vertebrados), es preciso incrementar notablemente el esfuerzo investigador en materia entomológica. Pero ésto no depende sólo de los entomólogos. Sin el apoyo decidido de la Administración y, en concreto, de las Instituciones Autonómicas, es virtualmente imposible llevar adelante programas de este tipo. Y sin información no pueden adoptarse medidas eficaces. Un ejemplo: toda la literatura científica recoge doce especies de arañas para la provincia de Teruel. El número real puede oscilar entre las 500 y las 1,000 especies, lo que representa una cifra mayor que todos los vertebrados presentes en el territorio. En estas condiciones, resulta difícil creer que las arañas (es sólo un ejemplo, pero real) han sido o pueden ser consideradas en el diseño de normas de protección faunística que afecten a la provincia.

La biodiversidad en España

La distribución geográfica de la diversidad biológica dista mucho de ser homogénea y se concentra especialmente en los trópicos. Aunque comparativamente pobre, la biodiversidad palearcica (región biogeográfica que incluye Europa, el Norte de África y Asia no tropical), presenta cifras importantes. No podemos concretar la riqueza biológica española por la sencilla razón de que su inventario apenas está iniciado en la mayor parte de los grupos (como de costumbre, sólo vertebrados y plantas superiores ofrecen datos seguros), pero podemos efectuar una estimación a partir de las magnitudes presentes en países de nuestro entorno cuyo catálogo se encuentra mucho más avanzado. En base a esta comparación, el número de animales presentes en España ascendería a unos 70,000. De ellos, unos 1,600 serían vertebrados, 12.400 serían invertebrados de diverso tipo y los restantes 56.000 serían arácnidos. Contaríamos, pues, con la presencia en nuestro suelo de 2.000 especies de arañas junto a unos 3,000 ácaros y otros 1,000 arácnidos de distinto tipo; 4,000 crustácenos, 1,000 miriápodos y unos 45.000 insectos diferentes que incluirían 14.000 escarabajos, 9,000 himenópteros, 8,000 moscas y más de 5,000 mariposas. A pesar de su magnitud, estas cifras tal vez deban ser elevadas una vez que sean puestos en marcha adecuados programas de investigación y catalogación. Por suerte, uno de los mejores ejemplos ha sido llevado a la práctica en Aragón desde el ámbito estrictamente privado.

La vida en la estepa monegrina

El desierto es uno de los lugares más desolados de la Tierra. La vida parece encontrar muchos problemas para prosperar en un medio tan árido y duro como éste. Aragón cuenta con una importante fracción de su territorio que presenta grandes parajes con este ecosistema: la estepa monegrina, una región que in-
la diversidad. La respuesta, cualquiera que sea el punto de vista adoptado, es necesariamente afirmativa. Desde una perspectiva ética, la humanidad se ha convertido en una fuerza a escala planetaria capaz, tal vez por primera vez en toda la historia geológica del planeta, de destriñirlo. Por tanto, nuestra especie ha asumido una enorme responsabilidad frente a la Biosfera: la preservación de la biodiversidad. Y ello, sólo puede hacerse desde el conocimiento. Pero incluso desde un punto de vista materialista, sin la conservación y gestión de la biodiversidad, la especie humana carece de futuro.

Más allá de frases dogmáticas y volviendo a nuestro tema concreto, entre nuestra especie y los artrópodos existe un complejo entramado de relaciones y vínculos que nos quedan entre la feroz competencia y la mayor dependencia. Ambos casos extremos están relacionados con un tercer grupo natural: las plantas superiores, un recurso material por el que la humanidad y un ejército de seres acorazados pelean sin cuartel desde que ambos grupos taxonómicos coincidieron sobre este planeta. Aproximadamente la mitad de los insectos conocidos practican la fitofagia como estrategia alimentaria (se alimentan exclusivamente de materia vegetal, incluyendo polen, esporas, savia o madera). Todos los lepidópteros y ortópteros, así como un tercio de los coleópteros y dipteros son herbívoros. La especie humana, a la que podríamos calificar de omnívora en sus hábitos, tiene una especial dependencia de los recursos agrícolas (para consumo directo o como alimentación de animales de cría, lo que en conjunto representa la mayor parte de su dieta). El conflicto en estas condiciones resulta inevitable teniendo en cuenta las necesidades globales de ambos colectivos. Según un informe de la FAO, aproximadamente el 20 por ciento de los productos agrícolas producidos anualmente en el mundo se pierde en el estómago de diversas especies animales, en su mayoría insectos. Ante un hecho como éste, que con frecuencia tiene una traducción en términos de hambre y muerte en las regiones menos favorecidas de nuestro planeta, resulta fácil adoptar posturas maniqueas y considerar a los artrópodos como una maldición bíblica para la humanidad. Existe, no obstante, otro punto de vista radicalmente diferente definido por el papel que desarrollan los insectos en la polinización de las plantas. Aproximadamente el 90 por ciento de la polinización es entomófila y sólo un 10 por ciento responde a otros modelos (viento, agua, etc.). Ello implica que sin los insectos sería imposible mantener la actual producción agrícola mundial y, en consecuencia, la población humana. Hace mucho tiempo que había percibido hambre y, de hecho, lo probable es que jamás hubiera alcanzado su actual nivel demográfico, obligada a subsistir a costa de recursos tan escasos como la caza, pesca, recolección de productos silvestres y cultivo de plantas en cuya reproducción no intervienen los insectos.

Los ecosistemas son complejos sistemas naturales con un rasgo común: su sensibilidad. Con frecuencia, cambios aparentemente mínimos en su interior pueden abocarlos a su degradación (re-
ducción de su diversidad) o desaparición (pérdida de su riqueza biológica). Los artrópodos, como principal grupo animal, juegan un papel fundamental en el complejo entramado de relaciones bióticas de cualquier ecosistema. Por contraste, la especie humana se integra mal en los ecosistemas naturales y suele terminar por perturbar su equilibrio interno. Las propias plagas de insectos son con frecuencia el resultado directo de la acción humana en los ecosistemas. El cultivo de la misma planta en grandes extensiones constituye una acumulación artificial (y por tanto, antinatural) de una especie vegetal en el tiempo y en el espacio que provoca la desaparición de una importante restricción del potencial biótico de cualquier río (la competencia por el alimento al convertirse éste en abundante) y, en ocasiones, el crecimiento de las poblaciones de todos aquellos insectos especializados en su consumo. Otro ejemplo de acción humana calamitosa es la introducción de nuevas especies. Es el caso de cangrejo del río americano que ha terminado por desplazar al autóctono o de Cacyreus marshalli, a mariposa importada accidentalmente, proveniente de Sudáfrica, que libra en Europa de sus parásitos y depredadores, está acabando con los gusanos de todo Aragón. Pero al tiempo de ser causantes de nuestras desdichas, los artrópodos son impagables aliados. Desde hace unas décadas, uno de los campos más prometedores de la entomología aplicada es la lucha biológica contra plagas, consistente en el uso de otros organismos (a los que llamamos beneficiosos) contra los destructores por mecanismos naturales (no químicos) como son la depredación o el parasitismo. En realidad, la lucha biológica fue utilizada ya en la antigua China, pero su aplicación oficial data de 1884, cuando fue introducido un escarabajo coecinidio australiano en California para el control de otro insecto (la cochinilla acanalada). Junto a esta labor de carácter fitocáustico realizada por depredadores y parásitos sobre herbívoros, los artrópodos ejercen otros importantes papeles en el desarrollo y mantenimiento de los ecosistemas, pues no existe ningún organismo ‘ínfí”l’. Conocidos como ‘los basureros de la naturaleza’, un ejército de detríficos, coprófagos y necrófagos realizan una importante labor de reciclado de materiales orgánicos sin el cual el ecosistema podría verse en peligro. Tal es su importancia que recientemente han debido introducirse artificialmente en dos regiones de Chile escarabajos coprófagos (comedores de estéroides) para resolver el problema del tratamiento de esta sustancia. Idéntica situación se dio en las Islas Hawái, Australia y otras regiones en las que los pastizales naturales estaban preparados para soportar la introducción de ganado vacuno, pero no de sus subproductos. La aparición de estéroides en áreas en las que previamente no existen grandes herbívoros representa una pérdida en término de desperdicio de un potencial abono, pero también importantes problemas derivados de la degradación de su composición fisiológica y de incremento de la población de dípteros que desarrollan parte de su ciclo en esa sustancia (con el consiguiente problema higiénico-sanitario). La degradación de la materia y el reciclado de sus componentes (excrementos, pero también materia vegetal muerta o cadáveres de animales) es realizada en condiciones naturales por un buen número de artrópodos.

La lista de interrelaciones entre hombre y artrópodo es enorme y no está exenta de momentos dramáticos. Es el caso de los insectos como vehículos de enfermedades infecciosas o parasitarias. En general, sólo un pequeño porcentaje de los artrópodos conocidos puede causar efectos negativos sobre la salud humana. Son tres los tipos de datos:

1) Datos directos. Aunque un buen número de artrópodos utilizan sustancias tóxicas como mecanismo de defensa o depredación, en muy pocas ocasiones la inoculación de las mismas es transensible para la salud humana. Por ejemplo, todas las arañas conocidas (excepto los miembros de la familia Uloboridae, con cinco representantes en Aragón) son venenosas. Sin embargo, ya se por no disponer de mecanismos inoculadores suficientemente poderosos como para traspasar la dura piel humana o ya sea por la irrevocable toxicidad del veneno, su picadura suele resultar inocua. Los insectos, a pesar de su enorme variedad, apenas utilizan venenos en sus actividades de depredación, aunque sí como mecanismo de defensa (es el caso de los himenópteros principalmente). La picadura de avispa es uno de los pocos casos en que existe un cierto riesgo para el ser humano (con 6 fallecimientos al año en España por shock anafiláctico como media). Otros casos, menos produc- tos de molestias, son los incidentes de reacciones hiperérgicas por contacto: orugas de determinados lepidópteros (la procesionaria del pino es la más común en nuestra Comunidad), cantarídas, ácaros productores de reacciones alérgicas, etc.

2) Producción de enfermedades en forma pasiva y parasitismo. Es el caso de determinados dípteros y cucarachas que pueden actuar como difusores de enfermedades (transmiten gérmenes patógenos), y el de artrópodos que producen afecciones directamente: piojos, pulgas, ácaros como el productor de la sarra, etc.

3) Por último, los artrópodos pueden ser transmisores necesarios de una compleja serie de enfermedades, algunas de ellas con graves consecuencias para el ser humano. Los artrópodos actúan como vectores, simples huéspedes necesarios, de virus, bacterias, protozoos, etc. Es el caso del mosquito Anopheles y el paludismo. Se estima que una parte significativa de los agentes patogénicos pueden haber sido, primero, simples parásitos de los artrópodos.

Nos limitamos a citar otro tipo de transformaciones que difícilmente pueden imputarse a los artrópodos, aunque éstos sean su causa: se trata de la entomofobia (y especialmente de la aracnofobia), que en ocasiones pueden llegar a producir delirios de infestación, paranoias y otros comportamientos irregulares que la psiquiatría no termina de explicar.

Ya sea como alimento (en nuestra cultura exclusivamente los crustáceos, pero en muchas otras la ropa se amplía a un buen número de insectos e incluso arácnidos, por no referirnos a los frutos de la apicultura), como indicadores de la salud de los ecosistemas o aguas, como datosores estratigráficos o como simple objeto que cautiva nuestra atención o la interrumpe zumbido, existe un fuerte vínculo entre ambos colectivos.

Dioses o demonios, bendiciones o plagas, la especie humana ha mantenido a lo largo de su historia reciente una relación de amorodio hacia los artrópodos. Para los egipcios de hace 3,000 años, el escarabajo pelotero representaba al dios solar Ra, una de sus mayores divinidades.
CIENCIAS NATURALES

des, o para las tribus indias del sur de Estados Unidos, la Mujer-araña era la 'creadora del mundo'. Mitos, leyendas, supersticiones y folclore han glorificado la mariposa o la han maldecido dependiendo de la época y el lugar. En todo caso, están ahí y forman parte de nuestra idiosincrasia y cultura.

La mayoría de nosotros no verá nunca con sus propios ojos la estrategia de caza del león africano o el comportamiento social del gorila de montaña. Sin embargo, apenas existe un metro cuadrado en Aragón fuera de las ciudades en el que un arácnido no esté intentando demostrar, al ojo observador, por qué son los dueños y señores de este Planeta.

La Entomología aragonesa

Aragón ha padecido históricamente la carencia de una institución que a la larga ha resultado fundamental para el desarrollo de los estudios entomológicos en cualquier otra región de nuestro país: un Museo de Historia Natural en torno al cual puedan florecer e instrumentarse todo tipo de asociaciones y actividades de carácter cultural y científico a través de las cuales alcanzar un conocimiento de nuestra riqueza biológica autóctona. El proyecto Museo de la Vida puede rendir, por fin, una carencia que parecía enquistada y que resulta injustificada a los méritos del pueblo aragonés y a la fascinante diversidad actual y paleontológica de nuestra tierra.

La inexistencia de otra Institución como una Facultad de Biología (y su correspondiente cátedra de artrópodos) también influye notablemente en el desarrollo de las investigaciones entomológicas a nivel local.

A pesar de que Aragón ha combinado de siempre ambas carencias, la entomología aragonesa ha conocido momentos gloriosos en su historia y habitualmente ha estado muy por encima de la productividad científica que podría esperarse de su situación material. Son muchas las figuras e hitos de la investigación desarrollada en nuestra comunidad que podrían ser glosadas con orgullo. No obstante, vamos a referirnos exclusivamente a tres momentos concretos, cada uno de ellos rondando un final de un siglo:

1) El zaragozano Ignacio Jordán De Asso (1742-1814) fue una importante figura intelectual del siglo XVIII. Sus actividades y trabajos abarcaron una amplia gama de inte-

que con arreglo a criterios modernos, se recoge un inventario comentado de 365 artrópodos. La obra fue publicada en Amsterdam, en 1781 y se titulaba: Introductio In Oryctographiam, et Zoologian Aragoniae. Accedit Enumeratio Stirpium in eadem Regione notier detectarum. Aragón fue, así, la primera región de España y una de las primeras del Mundo que contó con un catálogo de sus artrópodos adaptado a los criterios taxonómicos propuestos por Linneo y que siguen plenamente vigentes en la actualidad.

Zygaea camallolica. Los lepidópteros se encuentran entre los insectos mejor conocidos superando las 5.000 especies en la Península Ibérica.
De Asso hizo otras aportaciones a la entomología relacionadas con la lucha contra la langosta y aunque su obra principal en Entomología ha sido lógicamente superada por el peso de los años, tiene la indiscutible categoría de precursora.

2) El final del siglo XIX y primeras décadas del siguiente vuelven a colocar a la entomología aragonesa en la cúspide de las investigaciones nacionales en esta disciplina. El símbolo de esta época es el padre jesuita Longinos Navás (1858-1938), especialista mundial en el orden de los Neurópteros. De origen tarraceno, Navás llegó a la entomología en plena madurez y materializó una parte significativa de sus investigaciones durante los años que pasó en Zaragoza. A pesar de su condición de religioso y dedicación a la enseñanza, Navás se convirtió en uno de los entomólogos de mayor prestigio internacional. Cuenta con el récord al autor español más prolífico de artículos científicos (cerca de 800) publicados en revistas de todo el mundo. Describió cerca de 3,000 nuevas especies y variedades para la ciencia, muchas de ellas de Aragón y, junto a otras figuras notables, posiblemente que Zaragoza fuera uno de los centros de investigación entomológica más importantes de nuestro país durante varias décadas, fundando la Sociedad Aragonesa de Ciencias Naturales en 1902 y, más adelante (1918) y a la sombra de ésta, la Sociedad Entomológica de España, dedicada exclusivamente a los estudios entomológicos. El editorial del número 1 del Boletín de la Sociedad Aragonesa de Ciencias Naturales (1902), firmado por Juan Moneva y Puyol, contiene unos párrafos que, aun beherentes en su formulación encierran un objetivo que todavía estamos lejos de alcanzar.

Aragón quiere entrar en este movimiento: si es deber moral del individuo estudiante comenzar conviviéndose a sí mismo, y no merece nombre de culto quien es conocido por los demás antes que por sí, también a los pueblos alcanza el precepto clásico: Aragón quiere conocerse a sí mismo; Aragón, que no se dejó invadir por las armas injustas de musulmanes ni de franceses; tampoco quiere dar lugar a que nadie de fuera tenga que venir a estudiar lo que hay dentro de su territorio, porque los nativos y residentes en él no sepan cumplir esta misión.

3) Dejando pasar otra centuria de cuyo contenido poco podemos destacar, la Entomología aragonesa parece recobrar una cierta energía y ganar una notable presencia en el panorama científico nacional e internacional en la presente década. Desde el ámbito privado y como mero canalizador de las inquietudes de un grupo de aficionados aragoneses surgio a finales de los años 70 el Grupo Entomológico Aragones (G.E.A.), que, posteriormente, se transformaría en la Sociedad Entomológica Aragonesa (SEA). Entre sus objetivos se recoge la realización de todo tipo de actividades científicas encaminadas al mejor conocimiento entomológico de la Península Ibérica con especial atención a la Comunidad Aragonesa, así como el desarrollo de proyectos y estudios en materia de protección y conservación relacionados con los artrópodos. En la última década, la Asociación ha incrementado su número de socios de forma espectacular contando en la actualidad con una base social equiparable, cuando no netamente superior, a las de otras sociedades científicas españolas radicadas en Madrid, Barcelona, etc. Al mismo tiempo, se ha convertido en la Asociación española que mayor número de publicaciones científicas edita anualmente manteniendo cuatro títulos diferentes, con un total de entre 10 y 12 volúmenes al año. Esta productividad le permite mantener contactos e intercambios con otras 150 instituciones de museos de todo el mundo y ha convertido en una de las sociedades entomológicas más fuertes de Europa. La SEA presta una especial atención a la difusión de la entomología entre el público general y realiza habitualmente actividades de carácter divulgativo: charlas, cursos, exposiciones, etc.

Siguiendo los pasos iniciados por De Asso hace 200 años está poniendo en práctica la catalogación sistemática de toda la riqueza entomológica de Aragón, dedicando una de sus publicaciones trimestrales a tal fin. Hasta la fecha se ha recopilado la información relativa a unas 2.500 especies y existen trabajos en curso que, como mínimo, triplican esta cifra.

Las restantes publicaciones consisten en Zapatera, revista científica de primer orden con habituales descripciones de nuevas especies de artrópodos para la ciencia; Monografías con trabajos extensos sobre la fauna de la Península Ibérica o estudios sobre la entomofauna de Aragón (el volumen más reciente está centrado en el estudio de los insectos hemípteros de Los Monnegros) y Boletín de la SEA, revista de carácter divulgativo, trimestral y con números especiales dedicados a temáticas poco habituales en el panorama editorial español (Paleoentomología, Los artrópodos y el hombre, etc.).

La Sociedad presta una especial atención a la problemática conservacionista en Aragón y colabora con el Departamento de Medio Ambiente de la Diputación General de Aragón en cuestiones relacionadas con la protección de artrópodos, actividades de estudio científico y programas de cartografiado y distribución fanástica de nuestras especies. La SEA, en resumen, toma prestada, asumiendo como propia, una frase de la presentación de aquel insigne Boletín de la Sociedad Aragonesa de Ciencias Naturales de 1902, que cerraba su lamento al estudio de nuestra riqueza biológica, con estas palabras: dispongámonos a contestar debidamente las voces de ordenanza:

«¿Quién vive?
- Ciencia española.
- Siéntese, señor
- Aragoneses que estudien su país.»

BIBLIOGRAFÍA

Artrópodos en general, morfología y clasificación.

